If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-12x-14=0
a = 24; b = -12; c = -14;
Δ = b2-4ac
Δ = -122-4·24·(-14)
Δ = 1488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1488}=\sqrt{16*93}=\sqrt{16}*\sqrt{93}=4\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{93}}{2*24}=\frac{12-4\sqrt{93}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{93}}{2*24}=\frac{12+4\sqrt{93}}{48} $
| x/5+11/1=1/15 | | 9a-6=75 | | 3x+20+(2x)=180 | | Y=41.5-0.45x | | P=5g | | 5(x-4x)=2x-34+3x. | | x+(x/4)+(x-13)=76 | | 24=4/(1-x) | | 4k+2(35-k)=98 | | 4x+x+(x-13)=76 | | 25y-13=-8 | | 2(3.2x+5)x=2 | | 9^12/9^w=9^4 | | b−38/5=8 | | -4x+10-10=58-10 | | (1,2)x+4=(2,3)x+1 | | X+2500/7x+2500=4/13 | | (1/2x-7)/2=3x+4 | | a. | | 8−5(8+3x)=13 | | 11=3x-11/5 | | 6x9=69 | | y=15.75+0.95X | | x=52x-20 | | 17.5+4x=-6.5(6.5(3x-6) | | 2(2x+5)-2x=3(x+6) | | -x2+10=6 | | 2=q=5 | | 64x²-120x=-50 | | 12a-3a=9a | | 4c*3c=7c | | 3m=2-61/2 |